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Abstract

The process of unloading of an elastic–plastic loaded sphere in contact with a rigid flat is studied by finite element
method. The sphere material is assumed isotropic with elastic-linear hardening. The numerical simulations cover a wide
range of material properties and sphere radius. The contact load, stresses, and deformation in the sphere during both
loading and unloading, are calculated for a wide range of interferences. Analytical dimensionless expressions are pre-
sented for the unloading load–deformation relation, the residual interference and the residual curvature of the sphere
after complete unloading. A new measure termed elastic–plastic loading index is introduced to indicate the plasticity
level of the loaded sphere. Some ideas regarding reversibility of the unloading process and elasticity of multiple loading
unloading are also presented.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Repeated loading and unloading of rough surfaces is an important problem, especially in the technology
of micro/nano-systems, such as MEMS microswitches (Majumder et al., 2001, 2003), for example, or head–
disk interaction (Peng and Bhushan, 2003) in magnetic storage system. Hence, the interest in loading/
unloading of a sphere in contact with a flat, which can simulate a single asperity of a rough surface, is
obvious.

Johnson (1985) offered one of the first simple analytical models of unloading an elastic plastic spherical
indentation contact. Johnson claimed that even though large plastic deformations can occur during
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Nomenclature

a contact radius
A real contact area
Ac real contact area at the inception of plastic deformation
Amax real contact area before unloading
A* dimensionless contact area, A/Ac

E Young�s modulus
E* Hertz elastic modulus
H hardness of the sphere
K hardness factor, 0.454 + 0.41m
p0 maximum pressure at the contact center
P contact load
Pc contact load at the inception of plastic deformation
Pmax maximum contact load before unloading
P* dimensionless contact load, P/Pc

r radial coordinate
R original sphere radius
Rres residual central curvature after complete unloading
uz axial displacement
m Poisson ratio
ry yield stress in tension
x contact interference
xc critical interference at the inception of plastic deformation
xmax maximum contact interference before unloading
xres residual contact interference after complete unloading
x* dimensionless interference, x/xc
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loading, it is intuitive to expect the unloading process to be perfectly elastic. Johnson justified this hypoth-
esis based on Tabor (1948) observations of spherical indentation for hardness measurement.

Mesarovic and Johnson (2000) examined the process of unloading of two elastic–plastic spheres follow-
ing very large indentation which made their contact fully plastic with a uniform contact pressure distribu-
tion. It was assumed that during unloading to the point of pull-off, the deformation is predominantly
elastic. Hence, while the loading process was solved numerically the unloading solution was analytical.

Vu-Quoc et al. (2000) presented a simplified analytical load–unload model for the normal force–displace-
ment relation in elastic–plastic contacting spherical particles. The authors compared their model with a
nonlinear finite element model involving plastic flow in both loading and unloading conditions and found
good agreement. This model however was limited to relatively small normal loads, which, in the specific
dimensional case presented in the paper, amounts to interferences less than eight times that of the critical
one at yielding inception.

A study of the time dependent adhesive load–unload of viscoelastic material spheres was carried out by
Lin and Hui (2002) using finite element simulation. Upon reaching a maximum load, the spheres were un-
loaded until complete separation. The authors studied the effect of loading and unloading rates on hyster-
esis and the pull-off force.

Yan and Li (2003) presented a numerical study of the cyclic indentation of an elastic–perfectly plastic
half space by a rigid sphere using a nonlinear finite element method. Results of the contact pressure
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distribution, force–displacement relationship, and contact radius during loading and unloading were pre-
sented in a dimensionless form for steel flat. The authors found that subsequent load–unload cycles follow-
ing the first unloading are perfectly elastic but do not obey the Hertz theory.

Ye and Komvopoulos (2003) studied the effect of residual stresses on contact deformation of elastic–
plastic layered media. Two different loading types were analyzed: (a) normal contact consisting of indenta-
tion loading and unloading, and (b) sliding contact consisting of indentation, sliding and full unloading. A
three-dimensional finite element model of a rigid sphere interacting with a deformable layered medium was
developed. It was shown that the optimum residual stress which results in the lowest equivalent stress in the
surface layer upon subsequent loading depends on the type of contact loading, coefficient of friction, and
dominant deformation mode (plastic deformation or cracking) in the layer.

Li et al. (2002) presented a theoretical load–unload model for the frictionless contact of a rigid sphere
with an elastic–perfectly plastic half-space or an elastic–perfectly plastic sphere with a rigid flat. Formulae
describing the force–displacement relationship for static contact problems were derived. This model can be
considered a modification of Johnson�s (1985) and Vu-Quoc et al. (2000) models by using a better approx-
imation of the contact pressure distribution function, and considering the variation in the curvature of the
contact surface during the contact interaction. The theoretical results compared favorably with FEA results
for a typical steel half space.

Kim et al. (2004) performed ultrasonic experiments to characterize the elasto-plastic contact between
two rough surfaces. The experiments were performed by cyclic loading and unloading taking into account
the effect of hysteresis. The frequency-dependent ultrasonic reflection coefficient from the interface was
measured during loading and unloading cycles as function of the applied pressure.

As can be seen from the above literature review a complete universal solution for the unloading of an
elastic–plastic sphere is still missing. The main goal of the present paper is to develop a model for the
unloading of an elastic–plastic loaded sphere in a frictionless contact with a rigid flat. This is also equivalent
to the interaction between two identical spheres having the same radius and physical properties. Since a
spherical contact may also simulate a single asperity of a rough surface the present analysis can also help
understand the behavior of rough surfaces during repeated loading and unloading.
2. The unloaded spherical contact model

A schematic representation of the contact problem is shown in Fig. 1. A compliant hemispherical body
of an original un-deformed radius R comes into contact with a rigid flat surface. The material of the sphere
is assumed an elastic linear hardening, ductile isotropic material, with identical behavior in tension and
compression.

The dashed and solid horizontal lines in Fig. 1 show the rigid flat positions before and after loading,
respectively. The displacement, x, of the rigid flat (which will be termed ‘‘interference’’ in the following),
and the contact area with a radius, a, (see Fig. 1) correspond to a normal load, P, applied to the contact.

We assume that the contact interference, x, is much smaller than the un-deformed sphere radius, R, but
larger than the critical interference xc at the inception of plastic deformation (Chang et al., 1987). The con-
tact radius, a, is also very small compared to R. Hence, the analysis is carried out assuming small strain
theory.

The problem is axisymmetric (2D) about the z-axis. Therefore, for the complete analysis it is sufficient to
consider only one half of the axisymmetric hemisphere section. The boundary conditions consist of
constrain in the vertical direction at the hemisphere base and in the radial direction at its z-axis. Restrict-
ing also radial deformations at the hemisphere base does not affect the results of the analysis since this
boundary is very far away and therefore has very little effect on the contact zone (see Kogut and Etsion,
2002).
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Fig. 1. Schematic model of the contact problem.
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The spherical surface is free elsewhere except from the axial constriction enforced by the contacting rigid
flat. The contact is assumed frictionless (perfect slip condition). Such a perfect slip condition between an
elastic–plastic hemisphere and a rigid flat also simulate the contact condition between two identical spheres
regardless of the friction between them.

The critical interference, xc, which causes plastic yield inception is given by:
xc ¼
pKH
2E�

� �2

R ð1Þ
where the hardness, H, of the sphere is related to its yield stress by H = 2.8ry (see Tabor, 1951); the hard-
ness coefficient, K, is related to the Poisson ratio, m, of the sphere by (e.g., Chang et al., 1988)
K = 0.454 + 0.41m; and E* (the Hertz elastic modulus) is defined as:
1

E� ¼
1� m21
E1

þ 1� m22
E2

ð2Þ
where E1, E2 and m1, m2 are the Young moduli and Poisson ratios of the two materials in contact, respec-
tively. In the case of a rigid flat E2 ! 1; and for a sphere material with E1 = E; m1 = m, the Hertz elastic
modulus is reduced to:
E� ¼ E
1� m2

ð3Þ
While the elastic contact problem of a sphere and a rigid flat has an analytical solution (the classical
Hertz solution, see e.g., Johnson, 1985; Timoshenko and Goodier, 1970), the elastic–plastic contact prob-
lem requires a numerical solution. In the present work this problem is solved using the approach of Kogut
and Etsion (2002) for a frictionless contact between an elastic–perfectly plastic sphere and a rigid smooth
flat.

The solution consists of two stages. In the first one the sphere is loaded by the rigid flat to a dimension-
less interference x* = x/xc. During this stage the interference x is gradually increased up to a desired max-
imum value, xmax, and the contact load, the contact radius and the real contact area, reach their maximum
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values Pmax, amax and Amax respectively. The dimensionless contact load P/Pc, and contact area A/Ac as
functions of the dimensionless interference x* = x/xc during the elastic–plastic loading stage were given
by Kogut and Etsion (2002) in the form:
P
P c

¼ 1:03ðx�Þ1:425 for 1 6 x�
6 6

1:40ðx�Þ1:263 for 6 6 x�
6 110

(

A
Ac

¼ 0:93ðx�Þ1:136 for 1 6 x�
6 6

0:94ðx�Þ1:146 for 6 6 x�
6 110

( ð4Þ
where Pc and Ac are the contact load and real contact area at the inception of plastic deformation,
respectively.

The second stage consists of the unloading process, where the interference, x, is gradually reduced.
When the unloading process is completed, the contact load, contact radius, and real contact area fall to
zero. However, the original un-deformed spherical geometry is not fully recovered. Residual stresses and
strains remain locked in, and result in a deformed shape of the unloaded sphere. This deformed shape is
limited to a relatively narrow zone of the loaded contact prior to unloading and its immediate vicinity.
The deformed profile of the unloaded sphere may be characterized by a residual interference xres and a
residual non-uniform curvature with a radius Rres at its summit as shown schematically in Fig. 2. The resid-
ual interference xres and residual deformed profile with its summit residual curvature Rres depend on the
loading level in terms of xmax or Pmax from which the unloading process started.

For a relatively moderate loading, the residual radius Rres may be evaluated analytically using the ap-
proach suggested by Johnson (1985). Assuming a reversible unloading process, a subsequent loading to
xmax will obey the elastic Hertz solution for a perfect spherical shape with a uniform radius Rres and a
new interference x = xmax � xres. The final contact load and contact radius upon completion of the reload-
ing will be Pmax and amax respectively. According to the elastic contact Hertz theory (see e.g. Johnson, 1985
or Timoshenko and Goodier, 1970) the contact radius a is related to the interference, x, and the sphere
radius, R by
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Fig. 2. Three different elastic–plastic stages of the unloading problem.
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a ¼
ffiffiffiffiffiffiffi
xR

p
ð5Þ
From geometrical considerations, the axial displacement of a given contacting point on the spherical sur-
face, having a radial coordinate r, is:
uz ¼ x� r2

2R
ðr 6 aÞ ð6Þ
This displacement is related to the maximum pressure, p0, in the center of the contact zone by:
uz ¼
1

E�
pp0
4a

ð2a2 � r2Þ ð7Þ
The total load, P, compressing the two solids is given by
P ¼
Z a

0

pðrÞ2prdr ¼ 2

3
p0pa

2 ð8Þ
For the subsequent loading of the unloaded spherical shape from xres to xmax Eq. (5) yields:
amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxmax � xresÞRres

p
ð9Þ
From Eqs. (6) and (7) it follows that:
1

E�
pp0
4amax

ð2a2max � r2Þ ¼ ðxmax � xresÞ �
r2

2R
ð10Þ
Hence, for r = 0 Eq. (10) leads to:
1

E�
pp0amax

2
¼ xmax � xres ð11Þ
Finding p0 from Eq. (8) for Pmax and amax and substituting in Eq. (11) the residual interference xres can be
expressed in the form
xres

xmax

¼ 1� 3Pmax

4E�amaxxmax

ð12Þ
Substituting in Eq. (11) p0 from Eq. (8) and (xmax � xres) from Eq. (9) leads to a simple relation between
the residual radius Rres and the initial contact load, Pmax, prior to unloading, in the form:
Rres ¼
4E�

3

a3max

Pmax

ð13Þ
The residual radius of Eq. (13) can also be expressed in terms of the initial mean contact pressure pmax be-
fore unloading,
Rres ¼
4

3

Eamax

ppmaxð1� m2Þ ð13aÞ
A similar expression but with a constant of 2/3 instead of 4/3 is presented in Majumder et al. (2003) for
the residual radius in an unloaded MEMS microswitch.
3. The finite elements model

A commercial ANSYS 8.0 package was used to solve the load–unload contact problem. The model
shown in Fig. 1 had a finite element mesh that consisted of 1920 six-node triangular elements comprising



Table 1
Materials and geometrical properties combinations

Case Symbol E, GPa ry, MPa m R, mm xc, lm E/ry xc/R

1 � 200 210 0.32 10 0.0590 952.4 5.90 · 10�6

2 + 80 220 0.30 2 0.0810 363.6 40.5 · 10�6

3 � 69 28 0.30 10 0.0088 2464.3 0.88 · 10�6

4 · 80 220 0.30 1 0.0403 363.6 40.3 · 10�6

5 h 106 357 0.31 10 0.6053 296.9 60.5 · 10�6

6 n 100 105 0.32 10 0.0590 952.4 5.90 · 10�6
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a total of 3987 nodes. The sphere was divided into four different mesh density zones where zones I, II, and
III were within 0.01R, 0.05R, and 0.1R distance, respectively, from the sphere tip and zone IV, outside the
0.1R distance. Zone I had the finest mesh and all zones had gradual coarser mesh at increasing distance
from the sphere tip. The material of the sphere was modeled as an elastic linear hardening material. A
2% linear hardening was selected since it still yields results that are very close to an elastic–perfectly plastic
case, thus enabling comparison with existing loading results of Kogut and Etsion (2002), yet providing a
much better convergence of the numerical solution. The von Mises yielding criterion was used to detect
local transition from elastic to plastic deformation, and the Prandtl–Reuss constitutive law governed the
stress–strain state in the plastic zones.

Different materials and hemispherical radii were analyzed (see Table 1) to study the effect of these vari-
ables on the elastic–plastic contact loading–unloading behavior. These parameters were selected in such a
way that the critical interference, xc, which seems to be the most characteristic parameter of elastic–plastic
contact problems, varied over a wide range of values from about 0.0088 lm to 0.605 lm. The ratio of E/ry
also covered a wide range from about 297 to 2464. Also shown in Table 1 is the ratio xc/R which is uniquely
determined by E/ry through Eq. (1) and the relation between H and ry. The hemisphere was loaded to var-
ious contact interference values with an upper limit of x* = 170. Loading beyond this value is outside the
scope of the present study. It requires the treatment of very large deformations that may be relevant in plas-
tic forming.

In all the numerical simulations that were performed with the perfect slip condition at the contact, it was
found that during the loading stage the radial displacements of the contacting points are negligibly small
compared to their corresponding axial displacements. This suggests that in general there may be a very little
tendency to slip at the contact interface, and hence, the assumption of perfect slip condition at the contact
may not restrict the generality of the solution.
4. Discussion of the numerical results

Fig. 3 presents the dimensionless elastic–plastic load–displacement results for the loading–unloading
process in terms of P* vs. x*, while Fig. 4 presents the corresponding dimensionless results for the contact
area A*. The figures demonstrate results for three very different cases (cases 1, 2 and 5 in Table 1) in terms
of E/ry ratio, sphere radius and xc. As can be seen from Figs. 3 and 4 scaling the variables with their cor-
responding critical values at plastic yield inception renders the dimensionless solution a universal nature
that is independent of the physical and geometrical properties of the sphere. The dashed line in Fig. 3 pre-
sents the elastic–plastic loading results obtained by Kogut and Etsion (2002) for an elastic–perfectly plastic
material (Eq. (4) above). As can be seen these results correlate well with the present model. The contact area
results of Eq. (4) are identical to the present model loading results shown in Fig. 4. A best fit of the current
numerical results for the elastic–plastic loading over the range of x* values up to 170 is presented by the
solid lines in Figs. 3 and 4, and by the following empirical relations:



Fig. 3. Dimensionless contact load vs. dimensionless interference.

Fig. 4. Dimensionless contact area vs. dimensionless interference.
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P � ¼ 1:32ðx� � 1Þ1:27 þ 1

A� ¼ 1:19ðx� � 1Þ1:1 þ 1
ð14Þ
Note that Eq. (14) are somewhat simpler than Eq. (4) since they provide a single expression that covers a
wide range of x* values without the need to divide the range at x* = 6 into two different expressions. This
simplicity however, has its cost in accuracy and whereas Eq. (4) have an error of no more than 3% com-
pared to the FEA numerical results, the error found in Eq. (14) can reach 16% in P* and 18% in A* at
x* = 2. The errors involved with Eq. (14) gradually decrease with increasing x* and for x* > 100 the max-
imum error involved in using Eq. (14) is only about 3%.
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The numerical results of the unloading process initiated from three representative x�
max values of 50, 100,

and 150, respectively, are also shown in Figs. 3 and 4 for the cases 1, 2 and 5 of Table 1. It seems from these
results that the present dimensionless solution is universal not only for the loading but also for the unload-
ing stage. It is also clear from Fig. 3 that the load–displacement behavior during unloading is not linear and
is strongly affected by the level of initial loading x�

max. The residual interference x�
res for any given initial

value of x�
max can be found from the unloading process at its completion when the contact load vanishes.

A best fit that was carried out on many unloading cases from various initial x�
max values (see also Fig. 5)

resulted in a useful empirical relation for xres/xmax in the form:
xres

xmax

¼ 1� 1

ðxmax=xcÞ0:28

 !
1� 1

ðxmax=xcÞ0:69

 !
ð15Þ
Similarly, from many unloading numerical results like the typical ones shown in Figs. 3 and 4 the following
empirical relations were found for the load–displacement behavior and for the contact area, respectively
during unloading:
P � ¼ P
P c

¼ P �
max

x� � x�
res

x�
max � x�

res

� �np

A� ¼ A
Ac

¼ A�
max

x� � x�
res

x�
max � x�

res

� �na ð16Þ
where
np ¼ 1:5ðx�
maxÞ

�0:0331

na ¼ ðx�
maxÞ

�0:12
ð17Þ
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Fig. 5. Dimensionless residual interference vs. dimensionless maximum interference.
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Hence, by using Eqs. (15) and (17) together with the proper relations in Eq. (4) or (14) for the maximum
loading x� ¼ x�

max in Eq. (16), it becomes obvious that x�
max is indeed the major parameter affecting both

the contact load and contact area behavior during the unloading process.
Fig. 5 presents the numerical results from which the relation of Eq. (15) (which is also presented in the

figure by the solid line) was derived. As can be seen the residual interference xres decreases with a decreasing
level of the initial elastic–plastic loading and it completely vanishes for pure elastic loading when x�

max 6 1.
On the other hand, as the level of elastic–plastic loading increases, the residual interference approaches
asymptotically an upper limit. This upper limit, which is xmax, is obtained at very large initial plastic defor-
mations when the elastic recovery becomes negligibly small compared to the initial xmax.

The behavior of the residual interference discussed above is very well depicted in Eq. (15) for the extreme
cases of xmax = xc and xmax ! 1. In the first case Eq. (16) becomes:
P � ¼ ðx�Þ
3
2 ð18Þ
describing a purely elastic nonlinear force–displacement unloading process that follows the loading
Hertz solution. In the second case the force–displacement behavior during unloading (see Fig. 3) degener-
ates to:
x� ¼ x�
res ¼ x�

max ð19Þ

which describes a purely plastic unloading process. It should be noted here that although the first load–
unload cycle may be non-elastic, the first unloading can be fully reversible upon subsequent loading.
Indeed, a few second loading processes that were performed on the present model for several x�

max values
up to 150 indicated such fully reversible behavior. This suggests that following the first load–unload cycle
all subsequent cycles of load–unload will be fully elastic. A full study of the multiple loading problem is
outside the scope of the present paper and will be dealt with in a separate one.

It seems that the dimensionless residual interference, x�
res, can be used as a measure of the plasticity level

of the loaded sphere. We shall term this x�
res an ‘‘elastic–plastic loading (EPL) index’’ that varies between 0

and 1 where the lower and upper limits correspond to purely elastic and purely plastic loading conditions,
respectively. An almost identical measure of the plasticity level of the loaded sphere was obtained from a
more elaborate energetic approach by finding the ratio between the dissipated energy due to plastic defor-
mations and the work done to deform the sphere during loading (see Fig. 3).
EPLE ¼
R xmax

0
PL dx�

R xmax

xres
PUL dxR xmax

0 PL dx
where the subscripts L and UL correspond to the loading and unloading, respectively. In case where the
contact load during loading and unloading varies linearly with the displacement (which is a fair approxi-
mation as can be seen from Fig. 3) the above energetic approach yields exactly x�

res.
The EPL index differs from the well known GW plasticity index, w, for rough surfaces (Greenwood and

Williamson, 1966) in that the latter depends on xc and on surface topography but is totally insensitive to
the contact loading. The EPL index, on the other hand, strongly depends (in addition to xc) on the loading
level through xmax. It therefore better indicates the plasticity level of individual asperities and may lead to a
more physical ‘‘plasticity index’’ of contacting rough surfaces by considering their unloading from any elas-
tic–plastic loading level.

Note that the discrete numerical results shown in Fig. 5 were obtained for all the different cases of the
sphere material and geometrical properties combinations shown in Table 1. It is very clear from the figure
that the dimensionless residual interference, xres/xmax, and, hence, the EPL index is independent of these
physical and geometrical properties. This, once again, demonstrates the powerful universality of the present
model.
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The dashed lines shown in Fig. 5 represent the analytical relation of Eq. (12). It was obtained by using
the Hertz solution for the relation Pc = (4/3)E*acxc, which upon substituting in Eq. (12) yields
xres

xmax

¼ 1� Pmax=P c

ðamax=acÞðxmax=xcÞ
ð20Þ
Noting that amax/ac = (Amax/Ac)
0.5 and using Eq. (4) or (14) the right-hand side of Eq. (20) becomes a

function of xmax/xc only. As can be seen from Fig. 5 the analytical approach of Johnson (1985) fairly
approximates the numerical results.

Fig. 6 presents the numerical results of the residual radius of curvature, Rres, at the summit of the de-
formed fully unloaded sphere (see Fig. 2), normalized by the uniform radius R of the un-deformed original
sphere vs. the initial loading level in terms of x�

max. All the six cases of Table 1 are represented and it is clear
from the figure that they depend on the ratio E/ry The numerical results are well fitted by the expression:
Rres=R ¼ 1þ 1:275
E
ry

� ��0:216

ðxmax=xc � 1Þ ð21Þ
The dashed lines in Fig. 6 were obtained from Eq. (13) by using the Hertzian relation P c ¼ ð4=3ÞE�ða3c=RÞ.
This resulted in:
Rres

R
¼ ðamax=acÞ3

Pmax=P c

ð22Þ
this, again, by using Eq. (4) or (14), can be expressed in terms of xmax/xc only. As can be seen from Fig. 6
Eq. (22) or (13), which was obtained analytically by assuming pure elastic unloading, is indeed valid only
for low elastic–plastic loading levels but largely underestimates the residual radius Rres over most of the
elastic–plastic loading range. Recall that a major assumption made in developing Eqs. (13) and (22) was
that the unloaded sphere maintains a perfect spherical shape with a uniform radius of curvature Rres some-
what larger than the original radius R. This assumption was examined in the present study by finding the
distribution of local residual curvature of the free surface of the unloaded sphere as a function of the radial
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coordinate r. This was accomplished by curve fitting the numerical results of the sphere surface nodes posi-
tion after unloading and then finding analytically the local curvature of the obtained curve.

Fig. 7 presents the results of the normalized local residual curvature as a function of the normalized
radial coordinate, r/amax, for several elastic–plastic loading levels, x�

max. The results shown are limited to
r/amax < 0.2 namely, to a small central portion of the formerly loaded contact area. As can be seen
from Fig. 7 the residual radius of curvature, Rres, at the summit of the unloaded sphere, can be much larger
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than the original un-deformed sphere radius, up to 40 times larger at the highest loading level. At larger
r/amax value the normalized local residual curvature decreases and eventually may approach unity far en-
ough from the initial contact zone. As evident from the figure, the residual radius of curvature remains uni-
form over the 20% range of amax only for modest loadings with x�

max 6 20 and even then it is from 5 to 8
times larger than the original sphere radius. At higher loading level the local residual curvature distribution
in the vicinity of the unloaded sphere summit is highly non-uniform. At xmax/xc = 50, for example, the
variation over a dimensionless radial span of 0.2 is about 100%, hence, very different from the simplified
approach of Johnson (1985).

Finally it is interesting to find out if any plastic zones remain locked inside the sphere upon completion
of the unloading process. Fig. 8 presents contours of such plastic zones that were found only when the
unloading started from higher levels of loading in terms of xmax/xc. As can be seen from the figure these
plastic zones are formed during the unloading process around the circumference of the loaded contact
area while the plastic zones that formed during the loading process under this contact area (see Kogut
and Etsion, 2002) disappear.
5. Conclusion

The unloading of an elastic–plastic spherical contact loaded by a rigid flat was analyzed by FEA for a
large range of material and geometrical properties of the loaded sphere. Analytical expressions for the
dimensionless contact load and contact area vs. displacement during unloading, and for the residual radius
of curvature and residual interference at the end of the unloading process, were derived by best fitting of the
numerical FEA results. A wide range of loading levels in terms of the maximum contact interference was
covered and the dimensionless model was found to be universal in nature and independent of specific mate-
rial or radius of the sphere. An elastic–plastic loading index (EPL index) was suggested, based on the
dimensionless residual interference, which may serve as a measure of the level of plasticity of the loaded
sphere. The main conclusion of the present analysis is that whereas the first load–unload cycle of a spherical
contact can be a non-linear and non-elastic phenomenon, the first unloading can be fully reversible and
subsequent multiple load–unload cycles can be elastic. More in depth study of multiple loading–unloading
is required.
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